View Factor Calculator: Analytical and Monte Carlo Method

In this web page, radiation view factors (also know as configuration factors) for different geometrical configurations can be calculated by the analytical formula and Monte Carlo method. The Monte Carlo calculation uses WebGL 2.0. Depending on the browser and hardware configuration, this functionality might not work. The number of rays for the view factor calculation is 100,000. The seeds of the random number generator are fixed, so the results are reproducible.

Differential surface to circular disk

Diagram showing differential surface to circular disk configuration for view factor calculation
Analytical calculation 0.0
Monte Carlo method 0.0
\begin{gather} F_{d1-2} = \frac{r^2}{r^2+h^2} \cos \theta, ~~ \mathrm{where}~~\theta \le \arctan \frac{h}{r} \\ F_{d1-2} = 0, ~~ \mathrm{where}~~\theta > \arctan \frac{r}{h} + \frac{\pi}{2} \end{gather}

Differential surface to circular disk in parallel plane

Diagram showing differential surface to circular disk in parallel plane configuration
Analytical calculation 0.0
Monte Carlo method 0.0
\begin{gather} F_{d1-2} = \frac{1}{2} \left[ 1 - \frac{Z-2R^2}{\sqrt{Z^2 - 4R^2}} \right] \\ \mathrm{where}~~H = \frac{h}{a}, ~~ R = \frac{r}{a}, ~~ Z = 1 + H^2 + R^2 \\ \end{gather}

Differential surface to rectangular surface in parallel plane

Diagram showing differential surface to rectangular surface in parallel plane configuration
Analytical calculation 0.0
Monte Carlo method 0.0
\begin{gather} F_{d1-2} = \frac{1}{2\pi} \left( \frac{A}{\sqrt{1+A^2}} \arctan \frac{B}{\sqrt{1+A^2}} + \frac{B}{\sqrt{1+B^2}} \arctan \frac{A}{\sqrt{1+B^2}} \right) \\ \mathrm{where}~~A = \frac{a}{c}, ~~ B = \frac{b}{c} \end{gather}

Differential surface to rectangular surface in 90° angle

Diagram showing differential surface to rectangular surface at 90 degree angle configuration
Analytical calculation 0.0
Monte Carlo method 0.0
\begin{gather} F_{d1-2} = \frac{1}{2\pi} \left( \arctan \frac{1}{Y} - \frac{Y}{\sqrt{X^2+Y^2}} \arctan \frac{1}{\sqrt{X^2+Y^2}} \right) \\ \mathrm{where}~~X = \frac{a}{b}, ~~Y = \frac{c}{b} \end{gather}

Differential surface to sphere

Diagram showing differential surface to sphere configuration for view factor calculation

Analytical calculation 0.0
Monte Carlo method 0.0
\begin{gather} F_{d1-2} = \left( \frac{r}{h} \right)^2 \cos \theta, ~~ \mathrm{where}~~\theta \le \arccos \frac{r}{h} \\ F_{d1-2} = 0, ~~ \mathrm{where}~~\theta > \arcsin \frac{r}{h} + \frac{\pi}{2} \end{gather}

Differential surface to cylinder

Diagram showing differential surface to cylinder configuration for view factor calculation


Analytical calculation 0.0
Monte Carlo method 0.0
\begin{gather} F_{d1-2} = \frac{L}{\pi H} \left[ \frac{1}{L} \arctan \frac{L}{\sqrt{H^2-1}} + \frac{X-2H}{\sqrt{XY}} \arctan \sqrt{\frac{X(H-1)}{Y(H+1)}} - \arctan \sqrt{\frac{H-1}{H+1}} \right] \\ \mathrm{where}~~L = \frac{l}{r}, ~~ H = \frac{h}{r}, \\ X = (1+H)^2 + L^2, ~~ Y = (1-H)^2 + L^2 \end{gather}

Differential surface to right triangle in parallel plane

Diagram showing differential surface to right triangle in parallel plane configuration
Analytical calculation 0.0
Monte Carlo method 0.0
\begin{gather} F_{d1-2} = \frac{D}{2\pi A} \arctan \left( \frac{D \tan \theta}{A} \right), ~~ \mathrm{where}~~D = \frac{d}{h}, ~~ A = \sqrt{1+D^2} \end{gather}

Disk to parallel coaxial disk

Diagram showing disk to parallel coaxial disk configuration for view factor calculation

Analytical calculation 0.0
Monte Carlo method 0.0
\begin{gather} F_{1-2} = \frac{1}{2} \left\{ X - \sqrt{X^2 - 4\left( \frac{R_2}{R_1} \right)^2} \right\} \\ \mathrm{where} ~~ X = 1 + \frac{1 + R_2^2}{R_1^2}, ~~ R_1 = \frac{r_1}{a}, ~~ R_2 = \frac{r_2}{a} \end{gather}

Base disk to inside surface of cylincer

Diagram showing base disk to inside surface of cylinder configuration for view factor calculation

Analytical calculation 0.0
Monte Carlo method 0.0
\begin{gather} F_{1-2} = 2H \left[ \sqrt{1+H^2} - H \right] \\ \mathrm{where} ~~ H = \frac{h}{2r} \end{gather}

Identical, parallel, directly opposed rectangles

Diagram showing identical parallel directly opposed rectangles configuration for view factor calculation

Analytical calculation 0.0
Monte Carlo method 0.0
\begin{align} F_{1-2} = &\frac{2}{\pi XY} \left\{ \ln \left[ \frac{(1+X^2)(1+Y^2)}{1+X^2+Y^2} \right]^{1/2} + X \sqrt{1+Y^2} \arctan \frac{X}{\sqrt{1+Y^2}} \right. \\ &\left. + Y \sqrt{1+X^2} \arctan \frac{Y}{\sqrt{1+X^2}} - X \arctan X - Y \arctan Y \right\} \\ &\hspace{70pt}\mathrm{where} ~~ X = \frac{a}{c}, ~~ Y = \frac{b}{c} \end{align}

Two rectangles with one common edge and 90° angle

Diagram showing two rectangles with one common edge and 90 degree angle configuration

Analytical calculation 0.0
Monte Carlo method 0.0
\begin{align} &F_{1-2} = \frac{1}{\pi W} \left( W \arctan \frac{1}{W} + H \arctan \frac{1}{H} - \sqrt{H^2 + W^2} \arctan \frac{1}{\sqrt{H^2 + W^2}} \right. \\ &\left. + \frac{1}{4} \ln \left\{ \frac{(1+W^2)(1+H^2)}{1+W^2+H^2} \left[ \frac{W^2(1+W^2+H^2)}{(1+W^2)(W^2+H^2)} \right]^{W^2} \left[ \frac{H^2(1+W^2+H^2)}{(1+H^2)(W^2+H^2)} \right]^{H^2} \right\} \right) \\ &\hspace{110pt}\mathrm{where} ~~ H = \frac{h}{l}, ~~ W = \frac{w}{l} \end{align}

Unit sphere to rectangle

Diagram showing unit sphere to rectangle configuration for view factor calculation

Analytical calculation 0.0
Monte Carlo method 0.0
\begin{align} F_{1-2} &= \frac{1}{4\pi} \arctan \sqrt{\frac{1}{H_1^2+H_2^2+H_1^2H_2^2}} \\ &\mathrm{where} ~~ H_1 = \frac{h}{l_1}, ~~H_2 = \frac{h}{l_2} \end{align}

Unit sphere to coaxial disk

Diagram showing unit sphere to coaxial disk configuration for view factor calculation

Analytical calculation 0.0
Monte Carlo method 0.0
\begin{align} F_{1-2} &= \frac{1}{2} \left[ 1 - \frac{1}{\sqrt{1+R^2}} \right] \\ &\mathrm{where} ~~ R = \frac{r}{h} \end{align}

Sphere to coaxial cone

Diagram showing sphere to coaxial cone configuration for view factor calculation

Analytical calculation 0.0
Monte Carlo method 0.0
\begin{align} F_{1-2} &= \frac{1}{2} \left[ 1 - \frac{1+H+R/\tan\theta}{\sqrt{(1+H+R/\tan\theta)^2 + R^2}} \right] \\ &\mathrm{where} ~~ H = \frac{h}{r_1}, ~~ R = \frac{r_2}{r_1}, ~~ \theta \ge \arcsin \frac{1}{1+H} \end{align}

Interior of outer cylinder to exterior of coaxial inner cylinder

Diagram showing interior of outer cylinder to exterior of coaxial inner cylinder configuration

Analytical calculation 0.0
Monte Carlo method 0.0
\begin{align} &F_{2-1} = \frac{1}{R} \left( 1 - \frac{H^2+R^2-1}{4H} - \frac{1}{\pi} \left\{ \arccos \frac{H^2-R^2+1}{H^2+R^2-1} \right. \right. \\ &\left. \left. - \frac{\sqrt{(H^2+R^2+1)^2-4R^2}}{2H} \arccos \frac{H^2-R^2+1}{R(H^2+R^2-1)} - \frac{H^2-R^2+1}{2H} \arcsin \frac{1}{R} \right\} \right) \\ &\hspace{50pt} \mathrm{where} ~~ R_1 = \frac{r_1}{h}, ~~R_2 = \frac{r_2}{h}, ~~A = R_2 + R_1, ~~B = R_2 - R_1 \end{align}

Interior of cone to base disk

Diagram showing interior of cone to base disk configuration for view factor calculation

Analytical calculation 0.0
Monte Carlo method 0.0
\begin{align} &F_{1-2} = \frac{1}{\sqrt{1+H^2}}, ~~ \mathrm{where} ~~ H = \frac{h}{r} \end{align}
Your browser does not support the HTML5 canvas element.